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Abstract. Within mean field approximation we investigate the phase diagrams of magnetic fluids in pres-
ence of a magnetic field. In a finite field the magnetic phase transition is absent, but instead a line of first
order liquid-liquid transitions ending in a critical point occurs for a magnetic interaction, which is suffi-
ciently strong. Varying the magnetic field these critical points extend from the tricritical point at H = 0
to a critical endpoint. For a fluid with Ising spins we calculate the critical lines and several tricritical
exponents analytically. For Heisenberg fluids we obtain the phase diagrams from a numerical solution of
the mean field equations of state.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 64.60.Kw Multicritical
points – 75.50.Mm Magnetic liquids

1 Introduction

So far liquid ferromagnetism has been verified in col-
loidal systems, e.g. Au–Co alloys [1,2]. Moreover it is
now well-established by computer simulations that a fluid
of particles, which carry spin (Ising or Heisenberg type)
and interact via a short range magnetic force, may ar-
range itself in a ferromagnetic liquid phase [3–12]. Depend-
ing on the relative strengths of the magnetic interaction
and the non-magnetic interaction the magnetic phase, the
gaseous phase and the liquid phase may form phase dia-
grams of different topologies containing first and second
order phase transition lines ending in critical or tricriti-
cal points [13,14]. Since so far most of the interest was
focused on the magnetic phase transition, the phase di-
agrams were studied for magnetic field H equal to zero.
Continuing the work of references [13,14] we extend the
mean field phase diagrams to non-zero magnetic fields. We
think that a complete exploitation of the phase diagrams
based on the mean field equations of state is a valuable
reference for real as well as for computer experiments. Al-
though in a magnetic field no magnetic transition exists,
an additional liquid-liquid transition may be present form-
ing the wings related to the tricritical point at H = 0. If
the gas-liquid transition surface is present, its intersection
with these wings leads to a line of triple points terminating
in a critical end point.

A number of models exhibiting tricritical points are
known [15], most of them are lattice models or models
for mixtures (e.g. 3He – 4He). In many magnetic models it
is the competition of ferromagnetic and antiferromagnetic

a e-mail: folk@tphys.uni-linz.ac.at

ordering which leads to multicritical behavior. In magnetic
liquids, a one component system, it is the competition be-
tween magnetic and spatial (density) ordering which leads
to multicriticality. The phase diagrams in the space of
pressure, temperature and magnetic field are symmetric
with respect to the magnetic field. Therefore in mean field
theory, concerning the tricritical behavior classical critical
exponents of symmetric type are found.

The magnetic liquid is another interesting model sys-
tem for studying multicritical behavior without using Lan-
dau expansion. For a van der Waals gas whose particles
carry in addition Ising spins certain phase transition lines
can be calculated analytically.

2 The one-dimensional Ising fluid

There are two coupled equations of state for a magnetic
van der Waals gas of hard spheres (with diameter b): one
fixing mainly the magnetic properties and the other gov-
erning the density (fluid) degrees of freedom. In mean
field approximation these equations are given e.g. in ref-
erences [13,14]. As equation of state (EOS) ruling the
magnetic properties we take the mean-field equation of
an Ising system (see [14])

m(ρ, T,H) = tanh
amρm+H

kBT
, (2.1)

rendering the magnetization m as function of the particle-
density ρ, the temperature T and the magnetic field H. am
is a measure of the strength of the magnetic interaction.
The equation of state for the pressure P of the system is
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the modified van der Waals equation

P
(
ρ, T,m2

)
=MC

(
kBT

ρ

1− bρ
−

1

2
amm

2ρ2 −
1

2
aρ2

)
(2.2)

where in addition to the attractive interaction of strength
a the magnetic interaction appears. The hard core repul-
sion restricts the density to ρ > b. In (2.2) for nonmono-
tonic isotherms the Maxwell construction has to be per-
formed; this is indicated byMC. It is convenient to intro-
duce the reduced variables

x =
1

ρb
, t =

kBTb

a
, h = Hb/a

p = p
(
x, t,m2

)
=
b2

a
P
(
ρ, T,m2

)
. (2.3)

Then only the ratio R = am/a of the magnetic to the
van der Waals interaction remains as parameter in the
equations of state

m = tanh

(
Rm

xt
+
h

t

)
(2.4)

p =MC

(
t

x− 1
−R

m2

2x2
−

1

2x2

)
· (2.5)

Depending on R several topologies of phase diagrams oc-
cur.

2.1 Short summary of the critical behavior for H = 0

2.1.1 The magnetic phase transition

The magnetic equation of state m(x, t) = tanh(Rm/xt)
shows that magnetic phase transitions take place for val-
ues tm, xm on the line

xmtm/R = 1 . (2.6)

These transitions are of second order as long as the com-
pressibility is larger than zero, i.e. ∂p/∂x|xmtm→R− ≥ 0.

Given a fixed value of xm, the fluid is paramagnetic in
the high-temperature region, whereas it becomes ferro-
magnetic for temperatures below tm; the order parameter
is the spontaneous magnetization m0, i.e. the solution of
(2.4) at h = 0: m0 = tanh (Rm0/xt). For xt/R → 1− the
magnetization m0 is approximately

m2
0 ' 3 (1− xt/R) , (2.7)

so that the critical exponent β assumes its mean field value
1/2.

In the (t, p)-plane the transition points (tm, pm) form
the line Lλ

pm = t2m

(
1

R− tm
−

1

2R2

)
· (2.8)

This line ceases to be physically relevant in the tricritical
point (TCP) at x = xt with temperature and pressure
(tt, pt). For the tricritical temperature the isotherm in the
p − x diagram has zero slope approaching the transition
line from the ferromagnetic phase [13]

∂p

∂x

∣∣∣∣
t→tm,−

= 0; (2.9)

together with (2.7) and xt = R this condition yields the
values for temperature and pressure at the tricritical point

tt = R

(
1−

√
2R

3R+ 2

)
,

pt =

(
1−

√
2R

3R+ 2

)2
 R√

2R
3R+2

−
1

2

 (2.10)

and xt = (3R+2)
R+2

(
1 +

√
2R

3R+2

)
(observe that xt = R/tt ≥

1).
In the vicinity of the tricritical point the exponent

βt describes the behavior of the magnetization approach-
ing the tricritical point at constant tt along the line
p → pt+ [15,16]. Using (2.7) in (2.5) and observing that
near the tricritical point the compressibility vanishes in
the ordered phase (2.9) one can check that βt = 1/4. Below
the tricritical point there is a first order phase transition
line Lτ in the (t, p)-diagram separating a paramagnetic
fluid phase from a ferromagnetic fluid phase (this line can
be obtained by a Maxwell construction). Since the magne-
tization is coupled to the density, the jump in m induces
a jump in x.

2.1.2 The gas-liquid phase transition

For m = 0, i.e. xt > R, there may exist also the crit-
ical point (CP) of the nonmagnetic van der Waals gas
(∂p/∂x = ∂2p/∂x2 = 0), at the well known values

tc =
4

27
, pc =

1

54
(2.11)

and xc = 3. The order parameter is the volume (density)
of the gas. For t < tc there are then first order transitions
from the gas to the liquid phase; both are paramagnetic.

One finds (see Ref. [17], p. 52) |xc − x| ∝ (pc − p)
1/2 for

t = tc and |xc1 − xc2| ∝ |tc − t|
1/2

for p = pc so that
for this transition also β = 1/2. But this critical point is
only present if at least tcxc = 4/9 > R. To find out the
actual range of existence of this critical point one has to
consider the first order phase transition lines of the mag-
netic and the gas-liquid transition. These meet in a triple
point. Varying R, two types of phase diagrams exist. Ei-
ther the first order line of the magnetic transition may
become shorter and shorter, so that in the limiting case
the tricritical point becomes a critical end point (CEP) on
the first order gas-liquid transition line, or the first order
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gas-liquid transition line becomes shorter and shorter and
the gas-liquid critical point disappears. In the latter case
only a magnetic transition line consisting of a second or-
der transition part separated by the tricritical point from
the first order transition part exists. According to refer-
ence [14] the first situation occurs for R ≤ R1 ' 0.211,
whereas the second one for R ≥ R2 ' 0.304.

2.2 The ideal Ising fluid of rigid spheres

We first investigate a simplified model by switching off
the nonmagnetic part of the interaction, i.e. we set a = 0.
Then only magnetically induced phase transitions in the
fluid phase remain. Nevertheless the phase diagram of this
model exhibits a tricritical point.

To obtain this limit of a gas of rigid spheres from the
equations of state (2.4, 2.5) one has first to rescale the
fields according to

p̄ = p/R, t̄ = t/R, h̄ = h/R.

Then performing the limit R→∞ yields

m = tanh

(
m

xt̄
+
h̄

t̄

)
(2.12)

p̄ =
t̄

x− 1
−
m2

2x2
· (2.13)

2.2.1 The critical behavior in zero magnetic field

For h̄ = 0 the variety of phase diagrams mentioned above
is reduced. Only the topology without a gas liquid transi-
tion (within the complete model it is found for parameter
values R > 0.304), remains. There is only the line of sec-
ond order magnetic transitions for

t̄mxm = 1 (2.14)

which terminates in the tricritical point

t̄t = 1−

√
2

3
= 0. 184,

p̄t =
5

2

√
2

3
− 2 = 4. 124× 10−2 (2.15)

and xt = 3 +
√

6 = 5. 449.
Below t̄t there is a line of gas-liquid first order transi-

tions induced by the magnetic interaction. In reference [13]
the dependence of the difference between the volumes in
the gas and the liquid phase on the coexistence curve,
x1 − x2, on the distance t̄t − t̄ has been found to be
x1 − x2 ∝ t̄t − t̄ yielding the critical exponent β2 = 1.
Because of the magnetic coupling the critical properties
of the fluid are different in the paramagnetic and the fer-
romagnetic phase. For the critical exponent of the volume,

xt−x ∝ (p̄t − p̄)
1/δ2 , the authors of reference [13] obtained

δ2 = 2 for x→ xt,− and δ2 = 1 for x→ xt,+.

2.2.2 The phase diagram in an external magnetic field

In the complete phase diagram, including the magnetic
field, the tricritical point is the origin of two lines of critical
points L+ and L− which border two surfaces of first order
phase transitions, the so-called wings. In the limit h̄→∞
the magnetization approaches the maximum value m2 = 1
and the EOS has the simple van der Waals like form

p̄ =
t̄

x− 1
−

1

2x2
; (2.16)

the critical point (CPas) is the usual van der Waals critical
point with the values (2.11) in the scaled fields

t̄as = 4/27 = 0. 148,

p̄as = 1/54 = 1. 852× 10−2 (2.17)

and xas = 3. The temperature and pressure values of the
tricritical point (2.15) are well above these values. The L+

line calculated below connects these points.
The conditions for the points on the line of second

order transitions L+ are

∂p̄

∂x
= 0,

∂2p̄

∂x2
= 0. (2.18)

Inserting the derivative ∂m/∂x obtained from the mag-
netic EOS (2.12) into these conditions one finds the mag-
netization m2 and the temperature t̄ as functions of x only

m2 (x) =
x2
(
6x− x2 − 3

)
9x2 − 10x+ 3

, (2.19)

t̄ (x) =
2 (x− 1)2

9x2 − 10x+ 3
, (2.20)

where x may vary between its two limiting values xc and
xt: 3 ≤ x ≤ 3 +

√
6 = 5. 449 . One can easily convince

oneself, that t̄ (x) and m2 (x) take the appropriate values
for xas = xc (2.17) and xt (2.15). From

h̄ (x) =
1

2
t̄ (x) ln

1 +m (x)

1−m (x)
−
m (x)

x
(2.21)

one knows the magnetic field h̄, and (2.13) gives the pres-
sure as function of x

p̄ (x) =
t̄ (x)

x− 1
−
m2 (x)

2x2
· (2.22)

Together with (2.19, 2.20) these equations establish the
parameter representation of the L+ line in

(
t̄, h̄, p̄

)
-space.

The magnetic interaction together with the finite magne-
tization leads to this line of critical points. It is a line
of second order gas-liquid transitions. The line L− is the
symmetric counterpart to L+, see the complete phase di-
agram shown in Figure 1.
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Fig. 1. Phase diagram (P pressure, T tem-
perature, H magnetic field) for the ideal Ising
fluid; only the critical lines are shown: Lλ is
the line of second order magnetic transitions,
L+ and L− are the lines of second order gas-
liquid transitions, the shaded surface indicates
the H = 0 plane. The filled circles mark the
tricritical point (TCP) and the two asymptotic
critical points (CP±as) at H →∞.

Approaching the tricritical point along L±

Expanding the parametric representation of L± in η =
xt−x shows how these critical lines approach the tricritical
point. In order to determine this behavior we investigate
first the magnetization for h→ 0, i.e. in our parametriza-
tion we have to find m2 (x) for x → xt = 3 +

√
6. Per-

forming in (2.19) the limit η → 0 gives

m2 (xt − η) '
3

2

(√
6− 2

)
η = 0. 674 η (2.23)

so that we conclude

m ∝ η1/2 = (xt − x)
1/2

. (2.24)

For the temperature t̄ and the pressure p̄ we find from
(2.20, 2.22) in the vicinity of xt (t̄t = 1/xt)

t̄t − t̄w (xt − η) '
1

6

(
9
√

6− 22
)
η = 7. 568× 10−3η ;

(2.25)

p̄t − p̄w (xt − η) '
1

12

(
9
√

6− 22
)
η = 3. 784× 10−3η.

(2.26)

This means that on the critical line L+ t̄t− t̄w and p̄t−w̄w
are proportional to xt − x.

A little bit more involved is the determination of h̄ (η)
for η → 0 from (2.21) which should lead to the power law
behavior h̄ (η) ∝ ηρ for η → 0 with some exponent ρ.
Superficially equation (2.21) seems to yield ρ = 3/2 but
due to a cancellation of lower order terms the exponent is
larger. Keeping the necessary powers of η and performing
the limit η → 0 we find

h̄ (η) '
2

15

(
89
√

6− 218
)
η2m (η)

= 5. 022× 10−4η5/2, (2.27)

hence h̄ (x) ∝ (xt − x)
5/2

. Inserting the inverted relation

x(h̄) = xt − 20. 876 h̄2/5. (2.28)

into (2.23) yields the magnetic equation of state m ∝ h̄1/5

when approaching t̄t on one of the lines L±; thus for this
direction [19] the critical exponent [20] is

δt = 5 . (2.29)

Finally L+ for small magnetic fields h̄ is represented in a
(t, p, h)-diagram by

t̄w(h̄) = t̄t − 0.158h̄2/5 (2.30)

p̄w(h̄) = p̄t − 0.079h̄2/5. (2.31)

In the vicinity of the wing critical point

For finite h̄ there is only the critical point on the L±-line
in the magnetized fluid. The finite magnetization brings
about a density dependent contribution to the pressure.
Due to this term there is now a “gas-liquid” critical point.
In the limit of large magnetic fields this critical point is of
van der Waals type. At finite h̄ we find for all phase tran-
sitions γ− = γ+ = 1. On the other hand, at the tricritical
point the nature of the phase transition changes and the
transition becomes a magnetic one. There the values of
the exponent of the compressibility in the magnetically
ordered phase, γ− = 1, is different from the one in the
disordered phase, γ+ = 0 [13].

2.3 The one dimensional Ising van der Waals fluid
in an external magnetic field

Let us now return to the magnetic van der Waals gas.
In the presence of a magnetic field we expect additional
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critical lines: one which originates from the tricritical point
(similar as in the ideal case) and, for certain values of R,
one which originates from the critical point.

2.3.1 The equation for the critical lines

As before, the critical lines for h 6= 0 (if they exist) are
subject to the conditions ∂p/∂x = 0 and ∂2p/∂x2 = 0.
These conditions contain all critical lines, the wing critical
lines L± and the ordinary gas-liquid critical line.

From the magnetic EOS (2.4) we have now ∂m
∂x =

m(1−m2)
x(1−m2−xt/R) . Inserted into the first condition for a criti-

cal point (compare (2.18)) we find

m2 =
(1− xt/R)

(
(x− 1)2 − xt3

)
(x− 1)2 − xt(2x− 1)

· (2.32)

and together with the second condition we get a cubic
equation

z3 − 2z2 (Rx+ 6x− 3)

(9x2 − 10x+ 3)

+ z

(
R
(
x2 + 6x− 3

)
+ 3

(
x2 + 2x− 1

))
x2 (9x2 − 10x+ 3)

−
2 (R+ 1)

x2 (9x2 − 10x+ 3)
= 0, (2.33)

for the variable z = xt/ (x− 1)2.
For arbitrary values of h we have to resort to the

equation (2.33). For each value of the inverse density x
there are three solutions for the scaled temperature zi(x).
The physical solutions have to fulfill several conditions: (i)
zi(x) has to be real, (ii) the magnetization squared

m2 (x, zi(x)) =

(
1− (x− 1)

2
zi(x)/R

) (
1− zi(x)x2

)
1− zi(x)(2x− 1)

·

(2.34)

has to be positive and smaller than or equal to 1, (iii) the
pressure p found from the EOS has also to be positive.
Solutions, which do not fulfill condition (iii), are already
in the region of the first order transition and the Maxwell
construction takes care of the proper (positive) pressure.

These three conditions leave at most two physically
meaningful real roots, which correspond to tw(x), hw(x),
pw(x) and tc(x), hc(x), pc(x). Depending on the topology
of the phase diagram at h = 0, i.e. depending on the
value of R, one of these two second order transition lines
reaches the asymptotic critical point at tc,as,∞, pc,as. The
situation of this limiting case for h→∞ is reached already
for moderate values of h.

Varying the temperature the isotherms may show three
types of saddle points: (i) a point related to L± (see point
CPw in Fig. 2), (ii) one related to the line of critical points
(see point CP in Fig. 2) and (iii) a virtual point (situated
in the coexistence region) which results from the contribu-
tion of the increasing magnetization to the pressure (see
the dot in Fig. 2).

1.5 2.0 2.5 3.0 3.5 4.0
0.00
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0.06

t
c
=0.1481
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w

t
cw

=0.1495

0.152

0.1385
CP

R=0.28
h=0.001

p

x

Fig. 2. Isotherms of the Ising van der Waals fluid at R = 0.28
in the p − x diagram for finite h = 0.001 without Maxwell
construction. The squares mark the wing critical point (CPW )
and the gas-liquid critical point (CP) on their respective crit-
ical isotherms. The dot marks a virtual critical point within
the coexistence region of a first order gas-liquid transition.

For the limiting cases h→∞ and close to the critical
point at h = 0 the transition temperatures can be found
more directly. For three different cases of topology the
second order phase transition lines determined from (2.33)
are shown in Figures 3-5.

The limit of infinite strong magnetic field

In the limit h→∞ the solution of the magnetic equation
of state is m2 = 1 and consequently the equation for the
pressure reduces to the simple van der Waals form

p =
t

x− 1
−
R+ 1

2x2
,

whose only critical point has the coordinates

tc,as =
4

27
(R+ 1) ,

pc,as =
1

54
(R+ 1) ,

hc,as =∞ (2.35)

and xc,as = 3. This means that equation (2.33) has only
one physical solution in that limit.

The gas-liquid critical line in small fields

Near the critical point i.e. small values of h and R/xt < 1
(in fact for R = 1/4 we have R/xctc = 9/16 with (2.11))
m is also small and therefore we may expand the magnetic
EOS (2.4)

m =
h

t
(
1− R

xt

) · (2.36)
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ay(R) =
3R

2

(9R2 + 15R + 2)
√

2R(3R+ 2) − 2(3R + 2)(3R2 + 2R− 4)

27R3 + 54R2 + 9R− 16
· (2.40)

phs (ρ, T ) =


Tρ

1 + ρ2 − 0.67825ρ3 − ρ4 − 0.5ρ5 − 1.7ρ6

1− 3ρ+ 3ρ2 − 1.04305ρ3
ρ ≤ 0.4927

phs (0.4927, T ) 0.4927 < ρ ≤ 0.54447

Tρ
1 + ρ+ ρ2 − 0.67825ρ3 − ρ4 − 0.5ρ5 − 6.028eξ(7.9−3.9ξ)ρ6

1− 3ρ+ 3ρ2 − 1.04305ρ3
ρ > 0.54447.

(3.1)

and insert it into (2.5). From the two equations (2.18) we
obtain then the critical values tc(h) and pc(h) in order h2

tc(h) =
4

27
+

16

27

1(
4
9 −R

)3Rh2 (2.37)

pc(h) =
1

54
+

1

2

4
27 +R

((4/9)−R)
3Rh

2 (2.38)

with xc(h) = 3− 24R2h2/(4
9 −R)4. Of course this discus-

sion applies only for that range of values of the parameter
R where the critical point at h = 0 exists.

2.3.2 The lines L± near the tricritical point

In the vicinity of the tricritical point we may perform an
expansion similar as in subsection 2.2.2 by setting

x = xt − η and xt = R− ayη (2.39)

(note xttt = R). Inserted into equation (2.33) we get for
ay

see equation (2.40) above.

In the limit R → ∞, where ay → R(
√

6 − 2)/2, we re-
cover the result of the ideal Ising fluid. This can be ver-
ified from a comparison with equation (2.25) taking into
account that ay = (1/6)(9

√
6− 22)xt + tt.

Inserting the ansatz (2.39) for x and y into the mag-
netization (2.32) yields

m2 =
3ay
R
η (2.41)

and from the magnetic EOS solved for the field (compare
(2.21)) we get

h(xt − η) = f(R)η2√ayη (2.42)

with some function f(R). Expanding also tw and pw

tw(xt − η) = tt −
ay − tt
R/tt

η,

pw(xt − η) = pt −

(
tt

R

)2 (1

2

5tt − 3R

tt −R
ay

−R2 2tt −R

(tt −R)2
+
tt

R

)
η (2.43)

and inserting from (2.42) η(h) gives the parameter form
of the wing edges L±

tw(h) = tt − at(R)h2/5 (2.44)

pw(h) = pt − ap(R)h2/5. (2.45)

For large R both at(R) and ap(R) behave as R3/5 and
thus one recovers equations (2.30, 2.31).

3 Phase diagram topologies
for the Heisenberg fluid

Since we shall restrict ourselves to numerical calculations
we can use an improved hard sphere contribution to the
pressure more appropriate to the three-dimensional case
than the van der Waals expression. The magnetic interac-
tion is now of Heisenberg type. This means that we extend
the calculations of [14] to finite magnetic fields. Strictly
speaking we use for the hard sphere pressure instead of
the Carnahan-Starling equation [21] the equations given
by Hall [22] in the whole region of densities,

see equation (3.1) above.

For H = 0 this does not lead to essential numerical differ-
ences to the results of [14].

The magnetic EOS for the isotropic classical Heisen-
berg model reads

m(ρ, T,H) = L

(
Rρm

T
+
H

T

)
(3.2)

with the Langevin function L(z) = coth(z) − 1/z. Then
the pressure reads

P (ρ, T,H) =MC

[
phs(ρ, T )−

1

2
Rρ2m(ρ, T,H)−

1

2
ρ2

]
·

(3.3)

MC indicates as before the Maxwell construction and ρ,
T , p and H are measured in the units πb3/6, πb3k/(6a),
(πb3/6)2/a and πb3/a respectively.
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3.1 Zero magnetic field

Hemmer and Imbro [14] have investigated systematically
the possible topologies of the phase diagrams in the zero
field case. For special values of the ratio R phase dia-
grams have been constructed by integral equation meth-
ods [6], density functional methods and computer simu-
lations [8–11]. We show in Figure 6 those parts of the
phase diagram as function of the ratio R, which contain
the fluid phases and which have already been calculated
in [14]. The first order surface of gas liquid phase transi-

tions (light gray surface) is limited on one side by a line of
critical points (LCP) which in turn terminates in a criti-
cal end point (CEP) (there it touches the surface of first
order phase transition between the paramagnetic gaseous
and the ferromagnetic liquid phase (gray surface)). On the
other side the surface meets the surface of magnetic tran-
sitions (hatched and gray surface) in a line which consists
of two parts, critical end points (LCEP) and triple points
(LTP).

The surface of magnetic phase transitions consists
of two parts, the hatched part, where the second order
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transitions take place, and the gray part, where the tran-
sitions are of first order. The border between these two
parts is the already mentioned line of critical end points
(LCEP) and of tricritical points (LTP).

A second line of triple points (LTP, the intersection
of the gray and dark surface) exists; there the surface
of solid-liquid transitions (which is not shown) meets the
surface of magnetic transitions (either liquid-liquid tran-
sitions (gray) or solid-gaseous transitions (dark gray)).

By crossing the surface of second order magnetic tran-
sitions (hatched surface) the density of the fluid changes
continuously but with discontinuous derivative.

One of the interesting questions is whether computer
simulations can verify this complicated topology, in par-
ticular the existence of the tricritical line LTCP. Since the
tricritical point is not ruled out by computer simulations,
other techniques have to be used to clarify this question
[11]. It is known from other examples [23] that fluctuations
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may shift regions of first and second order transitions in
the field space, thus it is possible that the extension of the
LTCP-line is reduced in favor of the LCEP-line, accompa-
nied by an increase of the hatched second order surface.

3.2 Finite magnetic field

In order to have more information on the mean field topol-
ogy of the phase diagrams we extend the space of fields
including the magnetic field H. One effect is of course
that the magnetic phase transitions disappear, however
the contributions of the finite magnetization to the pres-
sure change the properties of the Heisenberg fluid and
besides the gas liquid transition an additional phase tran-
sition in the fluid may appear similar to the Ising inter-
action. From the variety of topologies of phase diagrams
we consider first the situation where at zero field a tri-
critical as well as a critical point exists. This is the case
for R = 0.5 (see Fig. 7). From the triciritcal point (TCP)
at H = 0 two lines of second order liquid-liquid transi-
tions, L±, emerge. They are the border lines of surfaces
of first order transitions (called wings, gray) adjoining in
lines of triple points (dashed) the surface of first order
gas-liquid transitions (dark gray). The points on the line
Lτ where the magnetic first order surface at H = 0 (light
gray) meets the wings are triple points. At H = ±0.0031,
T = 0.044 and P = 0.060 the wing lines L± impinge on
the first order surface of the gas-liquid transitions. These
points are critical end points (CEP±).

Decreasing R the wings become smaller. Finally, e.g.
for R = 0.25, at H = 0 no tricritical point exists, and
the magnetic second order transition line Lλ terminates

in a critical end point (CEP) on the first order transition
surface of gas-liquid transitions (dark gray) (see Fig. 8).
The line of gas-liquid critical points (LCP) borders this
surface of first order transitions.

In Figure 9 we present the phase diagram for differ-
ent values of R. It shows the folded surface of first order
phase transitions in the liquid. The line of critical points
(LCP) and the line of wing critical points (LWCP) both
terminate in critical end points (CEP) when they meet
the first order transition surface (dark gray). The critical
endpoints are connected by a line of triple points (LTP).

4 Discussion

Fluctuations may change the topology of a phase dia-
gram as well as critical exponents from classical to non
classical values. In the magnetic liquid this holds for the
second order phase transitions, whereas at the tricritical
point classical exponents are correct apart from logarith-
mic corrections to the power laws. As far as the topo-
logical features (number and positions of critical points
and lines) are concerned, Monte-Carlo calculations and
calculations in an extended mean field theory give quali-
tatively the same picture as the mean field calculations of
reference [14] although the existence of a tricritical point
is still under discussion [6,8,11] in three-dimensional sys-
tems. This is not the case in two dimensional magnetic
fluids [3–5]. Also Monte-Carlo calculations indicate non
classical exponents.

In the case of the Heisenberg fluid one expects the same
values for the exponents as for the solid Heisenberg mag-
net, however small but significant differences have been
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observed [9,10]. For the Ising fluid Fisher renormalized
exponents [24] are expected because of the diverging spe-
cific heat, but there also deviations are observed [12]. It
is not completely clear whether this deviations are due
to non asymptotic (crossover) effects and/or finite size
effects.

The study of magnetic liquids in finite magnetic fields
can contribute to the clarification of these questions. In
particular for the existence of the tricritical point at zero
magnetic field can be corroborated by the verification of

the topology in finite magnetic field, especially the exis-
tence of the wings.

Further it seems to be worthwhile to look for the Fisher
renormalization also in the case of the gas-liquid transi-
tions in finite magnetic field. These transitions belong to
the universality class of the Ising model [17] irrespectively
of the type of the magnetic interaction and therefore one
also expects Fisher renormalized exponents. In addition
the verification of the existence of the critical endpoint on
the first order gas-liquid surface is of interest.
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Quite recently in reference [25] the symmetric binary
fluid mixture with equal numbers of particles in both com-
ponents on average has been considered in mean field the-
ory as well as using Monte-Carlo simulation. This system
can be mapped onto the Ising magnetic fluid model in zero
magnetic field. The tricritical point, predicted by mean
field theory, has been confirmed by Monte-Carlo simu-
lations. Although the quantitative picture of the phase
diagram remains inclusion of fluctuations shifts the nu-
merical values of the phase transition temperatures and
the regions of the parameter values of R for the different
topologies of the phase diagram.
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